Publications


Journals:

  1. Kumar, A., Mondal, S., Ghosh, R. 2022. Biomechanical performance of the cemented acetabular cup with combined effects of bone quality, implant material combinations and body weight. Proc. IMechE, Part H: J. Engineering in Medicine (Accepted). DOI: 10.1177/09544119221113698.

  2. Sneha, Ghosh, R. 2022. Microstructural analysis to understand the strength of teak wood using experimental methods. Materials Today Communications. 32, 104064.

  3. Jyoti, Mondal, S., Ghosh, R. 2022. Biomechanical analysis of three popular tibial designs for TAR with different implant-bone interfacial conditions and bone qualities: A finite element study. Medical Engineering and Physics. 104, 103812.

  4. Kumar, A., Ghosh, R. 2022. A review on experimental and numerical investigations of cortical bone fracture. Proc. IMechE, Part H: J. Engineering in Medicine. 236, 297 – 319.

  5. Kumar, A., Ghosh, R. 2021. Fracture Toughness of Acrylic PMMA Bone Cement: A Mini-Review. Indian Journal of Orthopaedics (Accepted). DOI: https://doi.org/10.1007/s43465-021-00495-2.

  6. Kumar, A., Ghosh, R. 2021. Particularly Optimized Enriched Element-Free Galerkin Method (POE-EFGM) for Orthotropic Fracture Analysis of Cortical Bone. Engineering Fracture Mechanics. 254, 107943.

  7. Kumar, A., Shitole P., Kumar, R, Ghosh, R. 2021. Experimental Investigation of the Effect of Bone Surface Macro-Groove Preparation on the Strength of Bone-Cement Interface. Materials Today Communications. 28, 102702

  8. Shitole P., Choubey A., Mondal P., Ghosh R. 2021. LDN Protects Bone Property Deterioration at Different Hierarchical Levels in T2DM Mice Bone. ACS Omega. 6, 20369 – 20378.

  9. Shitole P., Choubey A., Mondal P., Ghosh R. 2021. Influence of low dose naltrexone on Raman assisted bone quality, skeletal advanced glycation end-products and nano-mechanical properties in type 2 diabetic mice bone. Material Science & Engineering C: Materials for Biological Applications. 123, 112011.

  10. Mondal S., Ghosh, R. 2021. Influence of Cancellous Bone Material and Dead Zone on Bone Stimulus, Bone Remodelling and Potential Causes of Failure of the Tibial Component due to Total Ankle Replacement: A Finite Element Study. Proc. IMechE, Part H: J. Engineering in Medicine. 235, 185 – 196.

  11. Mondal, S., Ghosh, R. 2020. Experimental and finite element investigation of total ankle replacement: A review of literature and recommendations. Journal of Orthopaedics. 18, 41 – 49.

  12. Shitole, P., Gupta, A., Ghosh, R. 2019. Fracture Mechanism and Fracture Toughness at the Interface between Cortical and Cancellous Bone. Trans. ASME, J. Biomech. Eng., 141 (11), 114502 (1 – 6).  

  13. Kumar, A., Shitole, P., Ghosh, R., Kumar, R., Gupta, A. 2019. Experimental and Numerical Comparisons between FEM, EFGM, and XFEM Predicted Stress Intensity Factor and Energy Release Rate of Cortical Bone Considering Anisotropic Bone Modelling. Proc. IMechE, Part H: J. Engineering in Medicine, 233 (8), 823 – 838.  

  14. Mondal, S., Ghosh, R. 2019. Bone Remodelling around the Tibia due to Total Ankle Replacement: Effects of Implant Material and Implant-Bone Interfacial conditions. Computer Methods in Biomechanics and Biomedical Engineering, 22 (16), 1247 – 1257.

  15. Shitole, P., Gupta, A., Ghosh, R. 2019. Fracture Toughness at the Interface Between Cortical and Cancellous Bone. Orthopaedic Proceedings, 101-B, No. SUPP_5.

  16. Mondal, S., Ghosh, R. 2019. Effects of implant orientation and implant material on tibia bone strain, implant–bone micromotion, contact pressure, and wear depth due to total ankle replacement. Proc. IMechE, Part H: J. Engineering in Medicine, 233 (3), 318 – 331.  

  17. Awasthi, A., Sharma, R., Ghosh, R. 2019. Monte Carlo type Simulations of Mineralized Collagen Fibril based on Two Scale Asymptotic Homogenization. Trans. ASME, J. Biomech. Eng., 141 (4), 041002 (1 – 11).  

  18. Mondal, S., Ghosh, R. 2019. The Effects of Implant Orientations and Implant–Bone Interfacial Conditions on Potential Causes of Failure of Tibial Component Due to Total Ankle Replacement. Journal of Medical and Biological Engineering, 39 (4), 541 – 551.

  19. Sanjay, D., Mondal, S., Bhutani, R., Ghosh, R. 2018. The effect of cement mantle thickness on strain energy density distribution and prediction of bone density changes around cemented acetabular component. Proc. IMechE, Part H: J. Engineering in Medicine, 232, 912 – 921.  

  20. Ghosh, R., Paul, S., Rubel, Y., Paul, A., Saha, D. 2018. Effect of Implant Orientation on Implant-Bone Micromotion around Uncemented Metallic Acetabular Component. Orthopaedic Proceedings,Vol. 98-B, No. SUPP_1, 155.

  21. Mondal, S., Ghosh, R. 2017. A numerical study on stress distribution across the ankle joint: Effects of material distribution of bone, muscle force and ligaments. Journal of Orthopaedics, 14 (3), 329 – 335.

  22. Ghosh, R. 2016. Assessment of failure of cemented polyethylene acetabular component due to bone remodeling: A finite element study. Journal of Orthopaedics, 13 (3), 140 – 147.

  23. Ghosh, R., Pratihar, D. K. and Gupta, S. 2015. Towards the Optimal Design of an Uncemented Acetabular Component Using Genetic Algorithms. Engineering Optimization, 47 (12), 1587 – 1601.

  24. Ghosh, R., Pal, B., Ghosh, D., and Gupta, S. 2015. Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain. Computer Methods in Biomechanics and Biomedical Engineering, 18 (7), 697 – 710.

  25. Ghosh, R. and Gupta, S. 2014. Bone Remodelling around Cementless Composite Acetabular Components: Effects of Implant Geometry and Implant-bone Interfacial Conditions. Journal of the Mechanical Behavior of Biomedical Material, 32, 257 – 269.

  26. Ghosh, R., Mukherjee, K., and Gupta, S. 2013. Bone remodelling around uncemented metallic and ceramic acetabular components. Proc. IMechE, Part H: J. Engineering in Medicine, 227(5), 490 – 502.

  27. Ghosh, R., Mukherjee, K., Gupta, S. 2013. Bone remodelling around uncemented acetabular prosthesis. Orthopaedic Proceedings, 95, No. SUPP_15, 184.

  28. Ghosh, R., Gupta, S., Dickinson, A., and Browne, M. 2013. Experimental validation of numerically predicted strain and micromotion in intact and implanted composite hemi-pelvises. Proc. IMechE, Part H: J. Engineering in Medicine, 227(2), 162 – 174.

  29. Ghosh, R., Gupta, S., Dickinson, A., and Browne, M. 2012. Experimental validation of finite element models of intact and implanted composite hemi-pelvises using digital image correlation. Trans. ASME, J. Biomech. Eng., 134(8), 081003(1 – 9).

  30. Ghosh, R., Gupta, S., Dickinson, A., and Browne, M. 2012. Verification of the digital image correlation technique for bone surface strain measurements. J. Biomechanics, 45, S277.

  31. Ghosh, R., Saha, A., Nandi, A., Neogy, S. 2010. Stability analysis of a flexible spinning and precessing rotor with non-symmetric shaft. Journal of Vibration and Control., 16(1), 107–125.

Book Chapter:

  1. Kumar A., Ghosh R., Kumar R. 2022. Effect of Implant Materials on Bone Remodelling Around Cemented Acetabular Cup. In: Kumar R., Chauhan V.S., Talha M., Pathak H. (eds) Machines, Mechanism and Robotics. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-0550-5_3

  2. Kumar, A., Ghosh, R., Kumar, R. 2022. Effect of Interfacial Crack on the Prediction of Bone-Cement Interface Failure of Cemented Acetabular Component. Kumar R., Chauhan V.S., Talha M., Pathak H. (eds) Machines, Mechanism and Robotics. Lecture Notes in Mechanical Engineering. Springer, Singapore. pp 17 – 26.  https://doi.org/10.1007/978-981-16-0550-5_3.

  3. Mondal, S., Ghosh, R. 2020. Pre-clinical Analysis of Implanted Ankle Joint Using Finite Element Method. Advances in Fluid Mechanics and Solid Mechanics, Maity, D et al. (eds). Springer, Lecture notes in Mechanical Engineering.

  4. Saha A, Ghosh R, Nandi A, Neogy S. 2011. Unbalance response analysis of a spinning rotor mounted on a precessing platform. IUTAM Symposium on Emerging Trends in Rotor Dynamics, Ed. Gupta, K., IUTAM Bookseries, Springer, Volume 1011, 2011, pp 135-142.